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Some properties of Poisson-type equations 
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Department of Astronomy, University of Thessaloniki, Thessaloniki, Greece 

Received 3 July 1985 

Abstract. The general equation Vz@ = -4rf is studied where f #  0 all over a three- 
dimensional Euclidean space and has no symmetries. The necessary and sufficient condi- 
tions for the existence of a solution vanishing at infinity are derived. Some specific 
differential equations of the above form appearing in general relativity are explicitly solved. 
Several properties of the solutions are established. 

1. Introduction 

The solution of Poisson's equation 

V2@ = -47rp( r )  

in a three-dimensional Euclidean space, where p ( r )  is zero outside a sphere of finite 
radius, is a well known problem treated extensively in many advanced textbooks 
(Jackson 1962, Kellog 1953, MacMillan 1958, Morse and Feshbach 1953). In most of 
these presentations little attention is given to the more general Poisson-type equation 

V2@ = -47rf( r )  ( 2 )  
where now f ( r )  is different from zero over all space. In fact only special cases of 
equation (2) are studied, e.g. with symmetries or of two-dimensional nature, where 
the problem can be solved with well known methods (e.g. complex variables). 

This attitude in the literature is justified because of the problems encountered so 
far and the difficulty of solving equation (2) in the general case. Several investigations, 
however (Chandrasekhar and Esposito 1970, Persides 1971a, Winicour 1984), have 
shown that many approximation schemes for solving Einstein's equations in general 
relativity for an isolated source of spatially compact support reduce to a sequence of 
Poisson-type equations of the form 

V2@'"' = -47rf( r ) ( n )  (3) 
where f (  r ) ' " )  is given explicitly in terms of @"), @'), . . . , c P ( " - ' )  . The 'superpotentials' 
0") 9 a'') , * * *  , @("-') are known at the nth step and givef(r)'"' # 0 over all space. Such 
is the case even in classical electrodynamics (Persides 1971b), if Maxwell's equations 
are solved by an expansion in powers of c-' (a method equivalent to the use of the 
retarded potential). All these suggest to us to consider the general problem of solving 
equation ( 2 )  in a three-dimensional Euclidean space. It should be emphasised that 
all problems leading to equation (2) concern the field generated by an isolated bounded 
source. This is the real source. The field, however, of a certain approximation step 
acts as 'source' for the subsequent approximations and we have to solve equation ( 2 )  
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or (3) instead of equation (1). Since the real source is bounded we are interested in 
solutions of equation (2) which exhibit the same behaviour as the solutions of equation 
(1) at infinity, that is @ ( r )  goes to zero as r +  CO. In fact, in order that the calculations 
give some concrete and useful results we will examine solutions for which (a) @ ( r )  is 
analytic in r-' outside some sphere of finite radius and (b) @( r )  presents no singularities 
of any kind for finite r. 

The purpose of this paper is to examine the general relations between @ ( r )  and 
f ( r )  in the case when equation (2) can be solved and to give explicit solutions for 
some Poisson-type equations. 

In 0 2 we examine the conditions onf( r )  which guarantee the existence of a solution 
@ analytic in r-l and present some properties of the solutions. In § 3 we consider 
sequences of specific Poisson-type equations arising in the study of gravitational 
radiation from isolated sources. The solutions of these equations can eventually be 
expressed as integrals over a finite region of space (that of the real source) although 
f ( r )  is different from zero over all space. Finally in 0 4 we close with some remarks 
concerning more general Poisson-type equations. 

Throughout this paper p (  r )  and f( r )  are assumed to be continuous and bounded 
functions of r such that the volume integrals p ( r ' ) l r  - r'l-' d V' and jf( r')lr - r'l-' d V' 
over any sphere of finite radius exist. Furthermore, it is assumed that for p ( r )  an ro 
exists such that p ( r )  = 0 for r > ro, while f( r )  may be different from zero for arbitrarily 
large r. In the summations used below, the indices n, 1, m are assumed to take values 
from 0 to CO, from 0 to 00 and from - I  to I respectively, unless otherwise noted. Finally 
in volume integrals the integration is assumed to be carried out over that part (finite 
or infinite) of space in which the integrand is different from zero. 

2. Existence and properties of solutions 

It is well known that the unique solution of equation (1) that goes to zero as r + c c  is 

Furthermore for large enough r ( r >  ro) we have 

@( r )  = C @,,r-n-' .  
n 

( 5 )  

Thus the first objective is to ask for the necessary and sufficient conditions that permit 
a solution of equation (2) to be written in the form (5). The following theorem provides 
an answer. 

Theorem. Let f ( r )  be a continuous and bounded function of r. The necessary and 
sufficient conditions for equation (2) to have a solution of the form (5) for r > ro are 

f ( r )  = z f " ~ " - ~ ,  n ( 6 )  

where YIm(B, cp) are the usual spherical harmonics and there is no summation over n 
in equation (7). 
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ProoJ: We establish first the necessity of conditions (6) and (7). Let @ be a solution 
of equation (2) and have the form ( 5 )  for r >  r,. Acting on @ with the Lagrangian 
operator V 2  expressed in spherical coordinates r, 6, Q we find 

Since @,,  is a function of 6 and Q we can write 

On = C AnJmKm(6, Q) 
/. m 

(9) 

where Anlm are constants. Substituting in (8) and using well known properties of 
spherical harmonics we find 

We multiply ( 1  1 )  by Y:,,, and integrate over 6 and Q. Using the orthogonality property 
of spherical harmonics we have 

r 
- 4 ~  J fnY:m, dR = C ( n  - I ) (  n + I +  1)AnJm6JnSmm~ = 0 

J, m 

which implies equation (7) .  

(2) is 
Let us now assume that equations (6) and (7 )  hold for r >  ro. Then a solution of 

We will show that this solution can be written in the form ( 5 )  for r >  r,. After that it 
follows that this is the only solution which goes to zero at infinity (if there was another 
Of,  the difference @ - @’ would satisfy the Laplace equation everywhere and thus it 
would be identically zero). 

For r > ro the solution (13) can be split into three integrals I,, I,, Z3 as follows: 

We use the expansion (Jackson 1962, p 69) 

The first integral of (14) is 

The second integral of ( 1 4 )  is 
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I t n  

Thus equation ( 5 )  has been proven. It should be 
large round brackets in (16) does not depend on ro 

n + l  

[fn(e’, cp’)y~,(8‘, c p ’ )  

(16) 

emphasised that the quantity in 
as can be easily shown by direct 

differentiation and use of equations (6) and (7). This completes the proof of the 
theorem. 

The details of the proof show that condition (6) guarantees the convergence of the 
integral Z3, while condition (7) eliminates terms of the form r-“ In r(n 3 1)  from the 
potential (5 ) .  If condition (7) is not included in the theorem then CP will behave as 
(In r ) / r  near r = 00. This behaviour is physically unacceptable since lim,+m(r(D) is 
essentially the radiated energy in gravitational radiation and has to be finite. More 
generally it can be argued that a physical field F (e.g. an electromagnetic field or a 
gravitational field expressed as the difference between the metric tensor and the flat 
metric background) has to fall off at least as fast as r-’ for large r since r F  is the field 
registered on the conformal boundary of spacetime in the Penrose sense. 

A useful property of the potential can be derived directly from the proof of the 
theorem. From equation (16) the coefficient of r-l is 

space 

(17) 
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This expression gives the most important term (the coefficient of r - ' )  in the expansion 
of the potential. The first term in (17) does not depend on 8 and Q. The remaining 
terms included in the sum of (17) depend on 8 and Q if and only if fo depends on 8 
and Q. Thus Q0 is independent of 8 and Q and is equal to @.=I f ( r ' ) d V  

all 
space 

if and only if fo is independent of 8 and Q. Note that fo cannot be a non-zero constant 
because then equation (7) for n = m = 0 gives fo = 0. Thus fo either depends on 0 and 
Q in which case the full equation (17) holds or it is zero in which case equation (18) 
holds. 

3. Sequences of Poisson-type equations 

We turn our attention now to the solution of equation ( 3 ) .  If f ( t ) (" )  is a non-linear 
complicated function of @("), a'", . . . , Q ( n - 1 )  , then a special study is needed to improve 
our knowledge beyond that furnished by the theorem of 0 2. It happens, however, 
that in some cases having to do with (electromagnetic or gravitational) radiation from 
a bounded source (Persides 1971b, 1985) the right-hand side of equation (3) can be 
written as a sum A"' +JI"' +fl' of simpler terms. Thus A"' is different from zero in 
a bounded region of space (as p) , f2n )  is of the form V@.'"'+ r-'@(") andf l '  is some 
complicated expression (usually highly non-linear). Thus the first problem is to solve 
the Poisson-type equation 

V 2 q  = 2( i V@ + r - '@)  (19) 
where @ satisfies equation (1) and F represents the unit vector along r. Since this 
equation is of the form (2), namely the right-hand side is non-zero over all space, it 
appears that the solution V cannot be expressed as an integral over a finite region of 
space. However, a lengthy analysis of the right-hand side of (19) indicates that a 
solution can be written in the form 

Having this expression we can now give a straightforward proof that this \I' satisfies 
(19). The proof makes use of the relations 
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for n = 1. Taking the Laplacian of equation (20) and forming the right-hand side of 
equation (19) from equation (4), we find identical expressions. Consequently, if @ 
satisfies equation ( 1 )  the solution of (19) which goes to zero at infinity is given by 
(20). The integration in (20) is over that part of space where p ( r )  # 0, namely a finite 
region. 

The above procedure can be generalised to provide us with explicit solutions of 
sequences of Poisson-type equations. Let the superpotentials n = 0, 1,  . . . , CO, 

satisfy the sequence of differential equations 

(25) V 2 @ ( " )  = -(417rn/ n ! ) p (  r )  + 2( V + r - ' )@("- ' )  

and go to zero as r + CO (we assume @ ( - I )  = 0) . Th en they are given by 

d V' 
1 

n !  Ir - r'/ 
( r  - jr - r'l)" 

=- I p ( r ' )  

where the integral is taken over the region of space where p ( r )  # 0 (a  finite region). 
>e proof is again straightforward although a little more cumbersome. Using (21)-(24) 
we have the Laplacian of @('I, 

+ ( r  - Ir- r' l)n-l  - Ir - l +  rrl2 ( n  - I ) (  / r  r - - Ir r'l - r' l)n-2 (l+-) 

] dV'. 
( r -  / r  - r'I)"-' ( I  - Ir - r'I)'-' - + 

rlr-r ' l  Ir - * ' I 2  
We express also the right-hand side of (25) using (21)-(24). We find the same expression 
as above. Thus we have proved that the superpotentials @ ( n )  as given by (26) satisfy (25). 

Finally let us consider the superpotentials 9"" satisfying the sequence of diff erential 
equations 

(27) V2qA"' = 2( r̂  * v + r - l ) @ ( n )  

where @('I is given by (26). Working along the same lines we can show that these 
superpotentials are 

Note again that the integration is camed out over a finite region of space. 
Before closing this section it is instructive to justify the usefulness of these super- 

potentials by describing briefly (and loosely) how they are involved in the study of 
gravitational radiation. In general relativity it turns out that the energy radiated by 
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the gravitational field depends on the time derivative of the coefficient of r-' of the 
metric tensor g,, The metric tensor can be expressed in terms of the superpotentials 
presented here. Thus if 

= @ r ) r - '  + o( r - 2 )  (29) 

the time derivative of enters into the expression of the radiated energy. Since 
there are no monopole and dipole contributions the first @g) that contributes is @.b". 
Since for r >  r' 

we have from (26) 

This integral can be very easily expressed in terms of the quadrupole moment. Thus 
we conclude that the dominant term in gravitational radiation is quadrupole radiation 
and we can give an explicit expression of it. A detailed account of the solution of 
Einstein's equations using the results of this paper will be given elsewhere (Persides 
1985). 

4. General remarks 

In the previous sections we have presented some Poisson-type equations, i.e. generalisa- 
tions of the well known equation (1) .  We have established a theorem for the existence 
of solutions with the appropriate behaviour at infinity and we have solved some specific 
equations suggested by current research in general relativity. However, it should be 
emphasised that the equations studied here are the simplest generalisations of equation 
(1). Usually in general relativity equations of the form (3) are encountered where 
f ( r ) ' " '  depends not only on @ ( l ) ,  . . . , @(n- l ) ,  but also on @(n). Such an example 
is furnished by the equation 

V'A,, = a@,/axa +a@,/ax" (32) 

where 

The indices C U , ~  take the values 1 ,2 ,3  and xu are the Cartesian coordinates in 
three-dimensional Euclidean space. Equation (33) contains six coupled partial diff eren- 
tial equations with six unknowns, the A,, with A,, = Ap,. The adoption of a specific 
gauge condition for the metric tensor makes the right-hand side of (33) known and 
reduces the problem to that of equation (2). However, the study of the (physically 
acceptable) solutions of (33) remains an open problem and any progress will clarify 
the effect of gauge conditions on results and formulae connected with gravitational 
radiation. 
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